Formaldehyde-assisted isolation of regulatory elements.
نویسندگان
چکیده
Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) is based on locus-specific variations in the ability of protein components of chromatin to trap genomic DNA following formaldehyde treatment. This variation is mostly due to uneven nucleosome distribution since histones are the most abundant and highly crosslinkable components of chromatin. The method can identify and enrich for physically accessible DNA segments of the eukaryotic genome corresponding to known regulatory regions and regions that might have thus far unidentified structural role in the nuclear organization of chromatin. The enrichment patterns are cell type specific and thus might provide information about how transcriptional systems are organized and regulated in various tissues and how they might be disrupted in disease states. Analysis of a 268 kb region of chromosome 19 in human fibroblasts shown here demonstrates that while most DNA fragments detected by FAIRE correspond to sites of DNaseI hypersensitivity in active regions of chromatin, some are found in otherwise repressed chromatin domains and at other sites that are not found with other methods used to probe chromatin structure. Further exploration of FAIRE is warrented due to the simplicity of the protocol and recent advancements in massively parallel sequencing.
منابع مشابه
FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin.
DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, ...
متن کاملCharacterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells
Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone ...
متن کاملFormaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) Analysis Uncovers Broad Changes in Chromatin Structure Resulting from Hexavalent Chromium Exposure
The ability of chromatin to switch back and forth from open euchromatin to closed heterochromatin is vital for transcriptional regulation and genomic stability, but its dynamic structure is subject to disruption by exposure to environmental agents such as hexavalent chromium. Cr(VI) exposure disrupts chromatin remodeling mechanisms and causes chromosomal damage through formation of free radical...
متن کاملChromatin profiles of human cells in health and disease using FAIRE
PAUL G. GIRESI: Chromatin profiles of human cells in health and disease using FAIRE (Under the direction of Jason D. Lieb) Breast cancer is a heterogenous disease comprised of molecularly distinct subtypes with diverse clinical outcomes. Understanding the molecular composition of each subtype will aid in the effective diagnosis and treatment of breast cancer. The composition and activity of sub...
متن کاملPost-GWAS methodologies for localisation of functional non-coding variants: ANGPTL3.
Genome-wide association studies have confirmed the involvement of non-coding angiopoietin-like 3 (ANGPTL3) gene variants with coronary artery disease, levels of low-density lipoprotein cholesterol (LDL-C), triglycerides and ANGPTL3 mRNA transcript. Extensive linkage disequilibrium at the locus, however, has hindered efforts to identify the potential functional variants. Using regulatory annotat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wiley interdisciplinary reviews. Systems biology and medicine
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2009